Authentication by encrypted negative password

Abstract—

Secure password storage is a vital aspect in systems based on password

authentication, which is still the most widely used authentication technique, despite its some

security flaws. In this paper, we propose a password authentication framework that is designed

for secure password storage and could be easily integrated into existing authentication systems.

In our framework, first, the received plain password from a client is hashed through a

cryptographic hash function (e.g., SHA-256). Then, the hashed password is converted into a

negative password. Finally, the negative password is encrypted into an Encrypted Negative

Password (abbreviated as ENP) using a symmetric-key algorithm (e.g., AES), and multi-iteration

encryption could be employed to further improve security. The cryptographic hash function and

symmetric encryption make it difficult to crack passwords from ENPs. Moreover, there are lots

of corresponding ENPs for a given plain password, which makes precomputation attacks (e.g.,

lookup table attack and rainbow table attack) infeasible. The algorithm complexity analyses and

comparisons show that the ENP could resist lookup table attack and provide stronger password

protection under dictionary attack. It is worth mentioning that the ENP does not introduce extra

elements (e.g., salt); besides this, the ENP could still resist precomputation attacks. Most

importantly, the ENP is the first password protection scheme that combines the cryptographic

hash function, the negative password and the symmetric-key algorithm, without the need for

additional information except the plain password.